

SI Partitions and Courvalence relations Recall: A partition of a SQT S is a J. Composition $S = \bigcup_{i=1}^{n} A_i$ We write Dairvise disjoint (i.e., Ain Aj= \$\phi i \fij). $S = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j}^{(i)}$ Claim from last time: Partitions = equivalence re 19 tims Egil S = {animals}

Equiv. relation

(and E) a on b)

Same Species

Species

X

To generalize this we give some hotation

 $[x] = \{ y \in S : x \vee y \}$ $S/N = ELXJ_{xeS}$ is its set of equivalence 99550 Ali S/N is a set an so does not count repeats so, if

Notation: Let n be an equiv. not on 5

· for XES, its equivalence class is

 $S = \{aring1s3\}, N = \{same species\}$ Sparky = Rex but in the [Sparky] = { Dags3 = [Rex] and so S/N Joseph Listinguish between Espatry) and Erex. In practice how you find S/N: Stapli Pick XES on Set aside [x] Step2: Pick ye S-CD, Set 95ide Ly)

Stp3: Pick ZeS-CEXUEY), Sarash (Z) Whom you've exhausk 5 goill have set asite all the elevents of 5/2 w/o repeats. The Set X, y, z, ... is a <u>Set</u> Of representatives. eg is sparky is the best boil so rs representative elevent of [Sparky] = Epops]

Thm: Let S be a Set.

(1) If N is an equivalene velocition on S $S = \bigcup_{EXJ} EXJ$

(2) If

5 = 11 Ai

15 a partition of S,

i i to the i and b belong to 15 an equivalence rejection. These operations are invese ITIG COnsider R w the relation and = oth w NEZ

Plove N is an equiv. velution, find the postition R= LI WERN explicitly. What Shape is R/N MB: This illustrates one use of Equivalue relators - formalizes gluing.

Pf 9f Thm. (2): To Show N is reflexive 0) Sove as $x \in S = VA$: that $x \in A$ for Some i so xnx as x,x beth belong to Ai. to Slaw symmetric if and the and b both belong to a common A; then b and q belong to a common Ai ITIG West prop. Of a partition have

ve not used un how is it relevant to floositivity? To Show trasitivity, assume and and bac By definition this wens that Fix S, t. a, b ∈ Ai ow b, c ∈ Ag. As b ∈ AinA; av AinAj if ifj ve see 1=9.50 a,CEAi

 S_{α}

82 Functions

We Now come to one of the paison d'etros of our course : fortigas.

Definitet X and y be sets. A

relation from X to Y 15 a Subset \mathbb{R}^{n} \mathbb{R}^{n} \mathbb{R}^{n} \mathbb{R}^{n} \mathbb{R}^{n} \mathbb{R}^{n} \mathbb{R}^{n} \mathbb{R}^{n}

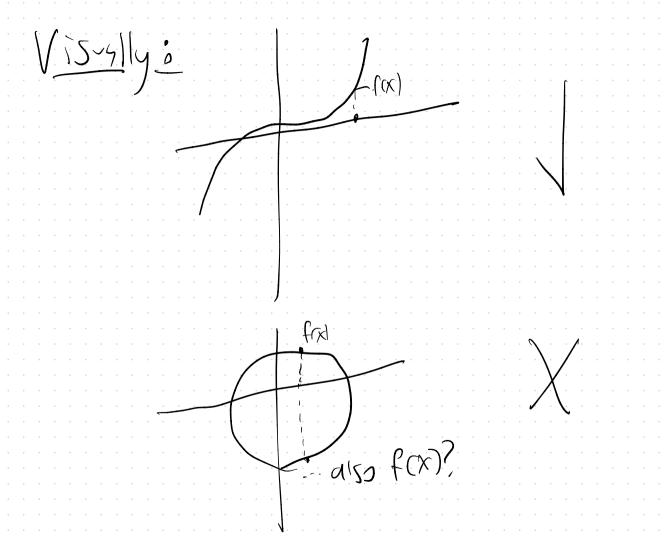
Cgil If Ris a relation on a set, Ris a relation from S to S CJI Tf f(xy) is a 2-vaiable verl re lation $\Gamma_{\mathcal{L}} = \mathcal{E}((x,y), f(x,y))$; $(x,y) \in \mathbb{R}^2 \times \mathbb{R}^2$ is a velilin from R2 to R

Defini Ff R is a relytion from X to Y we call X the domain of R au Y Me Codanais we would like to think of fu-ctions f: X -> y as certain relations from X to X via their graphs.

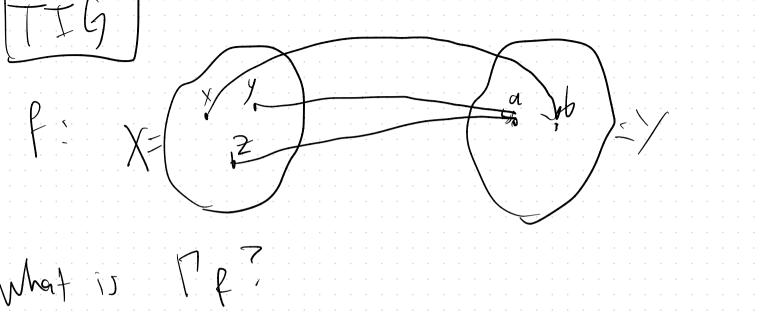
But what properties should this te? [IIG] Are graphs always reflexive? Symmetric?

A: None! So, what populies?

Fransilive?



Deloi A furction fix -> y a relation R from X to Y S.t. XEX thus orecisely one yey sit (x,y) ER. In this case we shorter XRy to y=fx). Motation: For a furction of we usually dente the relation as Pt on Call it the gruph.



For a function fix ->1 >

· the image of S unda X D $f(S) := \{ y \in Y : y = f(s) \text{ for } seS \}$ · the preinage of Tis $f^{-1}(T) := \{ x \in X : f(x) \in T \}$

TIG

· Visually At what is fest on f-(F) NB: As this shows, files) can be emply more than one point in general, 50 is NIT a fullion - we will deal later w

the case when f-1 (Ex) is exactly one paint in which can f-1 is the invose function · If f: R2 -4R is given by $f(X, Y) = X^2 + y^2, \quad \text{what is} \quad f^{-1}(D, D)^2.$ Statement: Identifies in VOlving Yogg w/ $f(-), f^{-1}(-), \Delta, \Delta$

great test questions. Pinpi Les fix=1 y be a function. They for SEX and TEY $f(S \cap f^{-1}(T)) = f(S) \cap T$ Pfi Sprose y E LHS. Thu, I XESnF(7)

S.t.
$$y=f(x)$$
. t od, as $x \in S$, then $y=f(x)\in f(S)$.
 $B-t$ as $x \in F^{-1}(T)$, also $y=f(x)\in T$. So,
 $y \in f(S) \cap T=RHS$.
 $Tf y \in RHS$, then $y \in f(S)$ So then is
Some $x \in S$ S.L. $y=f(x)$. But, as $f(x)=y \in T$
we see x is also in $f^{-1}(T)$. So, $x \in S \cap f^{-1}(T)$.

So,
$$y = f(x) \in f(S \cap f^{-1}(7)) = L + 5$$